The mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm

نویسنده

  • Tirth Raj Ghimire
چکیده

Adjuvants such as the aluminum compounds (alum) have been dominantly used in many vaccines due to their immunopotentiation and safety records since 1920s. However, how these mineral agents influence the immune response to vaccination remains elusive. Many hypotheses exist as to the mode of action of these adjuvants, such as depot formation, antigen (Ag) targeting, and the induction of inflammation. These hypotheses are based on many in vitro and few in vivo studies. Understanding how cells interact with adjuvants in vivo will be crucial to fully understanding the mechanisms of action of these adjuvants. Interestingly, how alum influences the target cell at both the cellular and molecular level, and the consequent innate and adaptive responses, will be critical in the rational design of effective vaccines against many diseases. Thus, in this review, mechanisms of action of alum have been discussed based on available in vitro vs in vivo evidences to date.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liposome and polymer-based nanomaterials for vaccine applications

Nanoparticles (NPs) are effective and safe adjuvants for antigen delivery in modern vaccinology. Biodegradable nanomaterials with suitable properties are frequently applied for conjugation or loading with antigens; they protect the antigens from degradation in vivo. NPs are applied as effective delivery system to facilitate antigen uptake by antigen presenting cells (APCs) and especially dendri...

متن کامل

مقایسه اثر ایمنی زایی نمک‌های آلومینیوم به عنوان ادجوانت در فرمولاسیون واکسن هپاتیت- ب نوترکیب

Background: Aluminum salts are common adjuvants in human and animal vaccine preparations. The two adjuvants aluminum phosphate and aluminum hydroxide show acceptable immunoadjuvant properties with many antigens. These two salts have different physicochemical characteristics that make each one suitable for certain antigens. The surface antigen of Hepatitis B (HBsAg) has several antigenic epitope...

متن کامل

Comparison of the Adjuvanticity of Aluminum Salts and Their Combination in Hepatitis B Recombinant Protein Vaccine Assessed in Mice

Background: Several adjuvants have been evaluated for vaccine formulations but alu-minum salts will continue to be used for many years due to their safety, low cost and adjuvanticity with different antigens. Two commonly used aluminum adjuvants, alumi-num hydroxide and aluminum phosphate have different adjuvanticity properties. Com-mercial recombinant protein hepatitis B vaccines containing alu...

متن کامل

Humoral immune response to Diphtheria and Tetanus toxoids by intranasal administration

  The immunogenicity of ten different formulations of intranasal diphtheria and tetanus vaccines which containing different absorption enhancers, adjuvants and other excipients were determined in guinea pigs by the serum neutralization (SN) method. From these ten formulations, it was selected four formulations which gave significant immunogenicity in guinea pigs. In order to design the "final f...

متن کامل

Evaluation of Thimerosal Removal on Immunogenicity of Aluminum Salts Adjuvanted Recombinant Hepatitis B Vaccine

     Thimerosal, which is approximately 50% mercury by weight is a preservative widely used in vaccines since the 1930’s. It meets the requirements for a preservative as set forth by Pharmacopeia challenge test and has been shown to be effective against a broad spectrum of pathogens. In July 1999, the Public Health Service agencies and vaccine manufacturers agreed that thimerosal should be redu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015